
Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

Experimental Analysis of Time-Based One-Time

Password (TOTP) Systems: Quantifying

Performance, Clock Skew Resilience, and Usability-

Security Trade-offs

Lydia Gracia - 18222035

Information System & Technology Study Program

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Ganesha Street No. 10 Bandung

E-mail: ly.gracies@gmail.com , 18222035@std.stei.itb.ac.id

Abstract—This research provides an experimental

investigation of Time-Based One-Time Password (TOTP)

systems, a commonly utilized multi-factor authentication

mechanism. The study includes quantitative assessment of the

operational performance of TOTP through direct

implementation of the RFC 6238 standard, focusing on the

generation and verification speeds for several HMAC algorithms.

Moreover, this study provides a thorough empirical analysis of

how network client-server clock skew and network latency affect

authentication success rates. Our findings show that although

TOTP operations are computationally trivial and take place in

microseconds, network latency significantly reduces the effective

OTP validity window and its resilience to clock

desynchronization is directly proportional to specified tolerance

levels. Different HMAC algorithms exhibit subtle performance

variations, with SHA-1 being the fastest but cryptographically

weakest, and SHA-512 being the strongest but slightly slower.

The result can provide insights to help developers and system

administrators to create, configure, and implement reliable and

easy-to-use authentication solutions.

Keywords—component; TOTP, One-Time Password,

Authentication, Clock Skew, Usability, Security, HMAC

I. INTRODUCTION

Time-Based One-Time Password (TOTP) stands as a
cornerstone of modern multi-factor authentication (MFA),
offering a robust defense against common cyber threats like
credential stuffing and phishing, which often bypass traditional
password-only or SMS-based OTP systems. Defined by RFC
6238, TOTP leverages a shared secret key and the current time
to generate a unique, short-lived password, significantly
enhancing authentication security. Despite its widespread
adoption, a comprehensive empirical understanding of TOTP’s
real-world performance characteristics and its resilience to
operational challenges, particularly client-server clock
desynchronization and network latency, remains vital for
optimal deployment.

Time-Based One-Time Passwords (TOTP), which are
frequently used in modern multi-factor authentication (MFA),
offer a robust defense against prevalent cyberthreats including
phishing and credential stuffing. By creating a unique, short-
lived password using a shared secret key and the current time,
TOTP significantly increases authentication security. However,
optimal deployment of TOTP still requires a thorough
empirical understanding of its real-world performance
characteristics and its ability to withstand operational
difficulties, especially client-server clock desynchronization
and network latency.

This report addresses these areas by quantitatively
evaluating TOTP’s operational efficiency, empirically
analyzing its tolerance to clock skew and network latency. This
paper specific objectives are to (1) measure the average
execution times for TOTP generation and verification
operations; (2) empirically examine the effects of network
client-server clock skew and network latency on TOTP
authentication success rates; and (3) examine the performance
characteristics of various HMAC algorithms (SHA-1, SHA-
256, SHA-512); and (4) discuss the practical usability-security
trade-offs related to clock skew tolerance configuration and the
impact of network conditions on TOTP systems.

II. BACKGROUNDS AND RELATED WORKS

A. Fundamentals of OTPs and Cryptography

Multi-Factor Authentication (MFA) schemes enhance
security by requiring users to present two or more pieces of
evidence (factors) to verify their identity [1]. These factors
typically fall into three categories: something the user knows
(e.g., a password), something the user has (e.g., a smartphone,
a hardware token), or something the user are (e.g., a
fingerprint, facial recognition). One-Time Passwords (OTPs)
primarily leverage the "something you have" factor, where a
dynamically generated code is sent to or produced by a trusted
device in the user's possession. The ephemeral nature of OTPs
makes them highly resistant to replay attacks, brute-force

mailto:ly.gracies@gmail.com
mailto:18222035@std.stei.itb.ac.id

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

attacks, and credential stuffing, which are common
vulnerabilities of static passwords [2].

B. Time-Based One-Time Password (TOTP) - RFC 6238

According to RFC 6238 [3], the Time-Based One-Time
Password (TOTP) technique is a commonly used standard for
creating temporary, time-synchronized authentication
credentials. Building upon the principles of HMAC, TOTP
offers a stateless alternative that simplifies server-side
management by eliminating the need to synchronize the event
counters (as seen in HOTP, HMAC-Based One-Time Password
[4]). It does this by substituting an event-based counter for a
time-based factor.

The TOTP algorithm's core components are a dynamically
changing time value (T) and a shared secret key (K), which are
only known by the client (authenticator app) and the server.
The time value T is derived by dividing the current Unix time
(seconds since the Unix epoch, January 1, 1970, 00:00:00
UTC) by a predefined time step (X), commonly set to 30 or 60
seconds [5]. This efficiently divides time into distinct,
sequential periods. The formula for calculating T is given by

 T=⌊(Current Unix Time−T0)/X⌋ ()  +  =  () ()

where T0 is the Unix time epoch (typically 0, unless
specified otherwise for synchronization purposes), and X is the
time step in seconds.

Once the time value T is computed, it is used as the
"message" input for the HMAC calculation. The following
formula is then used to generate the complete TOTP value:

 TOTP=TRUNCATE(HMAC-SHA(K,T)) ()  +  =  () ()

The HMAC digest produced with the shared secret key K,
the time value T, and a selected SHA cryptographic hash
function (such as SHA-1, SHA-256, or SHA-512) is denoted
here by the notation HMAC-SHA(K,T). This HMAC digest is
then transformed into a human-readable, fixed-digit OTP using
the TRUNCATE function. The following phases make up the
truncation procedure, which was taken from RFC 4226 Section
5.3 [3]:

1) Offset Calculation: As an offset, the last four bits of the

last byte of the HMAC digest are utilized. For example, if the

last byte is 0x3A, the last 4 bits are 0xA (decimal 10), so the

offset is 10.

2) Dynamic Truncation: Four bytes are extracted from the

HMAC digest starting from the calculated offset.

3) MSB Clearing: To generate the final, fixed-length

decimal OTP, this 31-bit integer is then modulo 10digits, where

digits is the required OTP length, usually 6 or 8.

4) Modulo Operation: This 31-bit integer is then taken

modulo 10digits (where digits is the desired OTP length,

typically 6 or 8) to produce the final, fixed-length decimal

OTP.
This time-dependency is a key strength of TOTP since it

limits the validity of codes to a relatively short time, making

them naturally resistant to replay attacks beyond that time
window. However, this also creates a crucial reliance on
precise time synchronization between the server that verifies
the OTP and the client that generates it.

C. Related Work

Various aspects of OTP systems have been thoroughly
examined in previous studies, including their general security
against relay attacks and brute-force attempts [6]. Studies on
the performance of cryptographic primitives and authentication
mechanisms [7] generally indicate that the underlying
cryptographic operations are efficient. However, specific
empirical benchmarks that focus on combined speeds of TOTP
creation and verification, especially in Python
implementations, are less often described.

Moreover, the issue of clock synchronization in distributed
systems and its effect on time-sensitive protocols such as
TOTP has been recognized [8], alongside some practical
concern on the allowed_skew parameter [9]. The impact of
network latency on TOTP authentication, while intuitively
understood, has not been rigorously quantified in many studies.
Similarly, while the security and performance characteristics of
different HMAC algorithms are well-studied in other contexts,
their specific impact within the TOTP framework warrants
empirical investigation.

This report extends existing knowledge by providing direct
empirical quantification of TOTP performance, conducting a
detailed analysis of its resilience to various client-server clock
offsets and network latencies, and comparing the performance
of different HMAC algorithms, offering concrete data to
inform the critical usability-security trade-off in real-world
TOTP deployments.

III. METHODOLOGY

A. TOTP Algorithm Implementation Details

RFC 6238's requirements were carefully followed in the
implementation of the Time-Based One-Time Password
(TOTP). It generates 6-digit OTPs by default using SHA-256
as the underlying HMAC (Hash-based Message Authentication
Code) method.

 The OTP generation process fundamentally involves
computing an HMAC-SHA256 digest. This digest is derived
from a time-dependent integer (specifically, the current Unix
timestamp divided by a predefined time step, typically 30
seconds, to yield the current "time window") and a shared
secret key. Following this, a dynamic truncation algorithm is
applied to a specific portion of the resulting digest to extract
and produce the final N-digit OTP. The cryptographically
secure pseudo-random number generator (CSPRNG) in the
operating system is used by Python's secrets module [9] to
produce the shared secret itself, guaranteeing robust
randomness.

 The system's goal for OTP verification is to verify an
OTP by comparing it to a variety of potentially legitimate
OTPs. Potentially legitimate OTPs are defined by the
allowed_skew parameter, consisting of the server's current time

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

window, as well as an adjustable number of adjacent time
windows (both past and future). This multi-window checking
mechanism is crucial for accommodating minor clock
desynchronization between the client and server, and for
mitigating the impact of network latency on authentication
success [3]. The underlying OTP computation within the
verification process was specifically designed to dynamically
generate and compare OTPs for each of these potential time
windows (T±i×time_step). According to the RFC, this method
made sure that the experimental setup properly replicated
client-side time offsets and network-induced delays, and that
the server-side verification mechanism evaluated these against
its defined tolerance windows.

B. Experimental Design

Three main studies were carried out: network latency impact
testing, clock skew resilience testing, and performance
benchmarking.

1) Performance Benchmarking: Performance was

evaluated by measuring the average execution time for TOTP

generation and verification operations. Each operation was

executed 100,000 times, utilizing Python's time.perf_counter()

for high-resolution timing. Tests were conducted with SHA-1,

SHA-256, and SHA-512 as the HMAC algorithms and

generated 6-digit OTPs to compare their performance

characteristics. Figure 1 provides a detailed flowchart

illustrating the experiment.

Fig. 1. Performance Benchmarking Flowchart

2) Clock Skew Resilience Testing: Client-server clock

skew resilience was assessed by simulating various client

clock offsets ranging from −60 seconds to +60 seconds, in 1-

second increments. For each client offset, 100 OTPs were

precisely generated on the client side using the corresponding

skewed time. These generated client OTPs were then

submitted for verification against a simulated server. The

server's OTP validation process was configured with

allowed_skew settings of 0, 1, and 2 time steps. Each time step

represents 30 seconds of tolerance in either direction (i.e., a 1-

step skew allows for checking current, previous, and next 30-

second windows). The success rate for each client offset and

server skew configuration was recorded. Figure 2 provides a

detailed flowchart outlining the experiment.

Fig. 2. Clock Skew Resilience Flowchart

3) Network Latency Impact Testing: This experiment

builds upon previous analysis by varying both client-side

clock skew and network latency. The latency values range

from 0 milliseconds to 60,000 milliseconds (1 minute). For

each latency value, and for server allowed_skew settings of 0,

1, and 2 time steps, 30 OTP verification attempts were made.

These tests were run at clock drift of 0s, -10s, and 10s. The

success rate for each latency, skew, and offset combination

was recorded. Figure 3 provides a detaled flowchart outlining

the experiment.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

Fig. 3. Clock Skew Resilience Flowchart

IV. RESULTS AND ANALYSIS

A. Performance Analysis

The empirical analysis of TOTP operations yielded the
following average execution times.

TABLE I. RESULT OF TOTP VS. HOTP PERFORMANCE

ANALYSIS

Operation SHA-1

(seconds)

SHA-256

(seconds)

SHA-512

(seconds)

TOTP Generation

(6-digit)

0.000016 0.000017 0.000019

HOTP Generation
(6-digit)

0.000017 0.000016 0.000019

TOTP Verification

(6-digit, Skew: 1)
0.000034 0.000035 0.000038

HOTP Verification
(6-digit, Window:

10)

0.000018 0.000017 0.000019

As described in the table, TOTP generation and verification
are both computationally lightweight operations that take only
a few microseconds to complete. It is also observed that
performance differences between the HMAC algorithms only
spans around 0,003ms to 0,004ms, with SHA-1 being the
fastest performance and SHA-512 is slightly slower, likely due
to the larger block size and more complex computations
involved. The performance differences, however, are negligible
and are unlikely to be noticeable in typical use cases.

B. Clock Skew Resilience

The clock skew analysis reveals a direct and quantifiable
correlation between the server's allowed_skew configuration

and its tolerance to client clock desynchronization. Figure 4
below shows the observed success rates for various client
offsets.

Fig. 4. TOTP Verification Success Rate vs.Client Clock Skew

As illustrated in Figure 4, the observed success rates for
various client offsets are:

1) allowed_skew = 0: With no tolerance for adjacent time

windows, successful verification was highly restrictive.

Empirical results show a 100% success rate only for client

offsets between approximately −15 seconds and +5 seconds

relative to the server's time window center. Outside of this

small window, all tested offsets had 0% success. This shows

that the precise current time step must be met without any

buffer.

2) allowed_skew = 1: Allowing for one adjacent time

window in each direction significantly extended the successful

verification window, achieving a 100% success rate for client

offsets ranging from approximately −45 seconds to +45

seconds (90 seconds timeframe). This illustrates how well

one-step skew can account for common minor clock drifts.

3) allowed_skew = 2: This configuration achieves a 100%

success rate for client offsets ranging from approximately −60

seconds to +60 seconds (120 seconds time frame). This wider

window offers greater resilience against more significant clock

desynchronization.
These findings represent the intrinsic usability-security

trade-off in TOTP's allowed_skew parameter. For instance, a 2-
step skew allows an OTP to be valid for up to 2 minutes,
compared to the standard 30-second window for a 0-step skew.
The higher allowed_skew value will directly enhance user
experience by forgiving greater clock discrepancies, which is
crucial in real-world scenarios where perfect clock
synchronization is challenging. However, with significantly
more valid time, the 2-step skew conformation is more prone to
brute-force attack. Needless to say, system administrators must
carefully weigh the security consequences of a longer OTP
validity window against the goal for better usability.

C. Network Latency-Clock-Skew Impact

This section presents the empirical findings on how various
combinations of client-side clock skew, network latency, and
server-side allowed_skew impacts the success rate of the TOTP

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

authentication. The visual representation of both variables’
complex relationship can be seen in Figure 5, 6, and 7.

Fig. 5. Network Latency-Clock-Skew Variance vs. Success Rates in Clients

with Initial Client Skew -10s

Fig. 6. Network Latency-Clock-Skew Variance vs. Success Rates in Clients

with Initial Client Skew 0s

Fig. 7. Network Latency-Clock-Skew Variance vs. Success Rates in Clients

with Initial Client Skew +10s

Figure 5, 6, and 7 proves the server’s allowed_skew settings
importance in determining the system’s tolerance to both initial
client clock desynchronization and subsequent network
latency. Data with a strict allowed_skew = 0 impact clients
with perfect clock synchronization for delay at 1000ms with a
slight drop to 96.67%.

Clients with an initial skew of -10 seconds, however,
experience a greater impact, where success rates plummeted to
63.33% with latencies of 500ms and 1000ms. This result shows
that no server-side tolerance for clock skew might make the
OTP generated by the client to become invalid due to the
combined effect of negative skew and network delay before it
reaches the server.

Even more extreme for clients with an initial clock skew of

+10 seconds, that consistently gives 0% success rate for

minimal latency. The +10 seconds client offset causes the

client to generate OTPs for the next time step before the server

has officially entered that time step. However, with network

delay, later the server’s clock catches up and transitions into

the time step for which the client’s OTP was generated. As a

result, the success rate in the range of 500ms to 1000ms finally

increases to an average of 80%. This interesting finding

introduces us to a possible vulnerability of TOTP, forward-

replay attack [10].

On the other hand, cases with allowed_skew = 2 shows
100% success rate in all of the test cases. The result further
shows that without sufficient server-side skew tolerance, even
relatively small network latencies (e.g. 500ms to 1000ms) can
cause significant authentication failures, especially when
coupled with existing client-server clock discrepancies. It also
highlights the security issues implications on larger
allowed_skew.

V. CONCLUSION

This study has demonstrated several key features of Time-
Based One-Time Passwords, including their remarkable
computational efficiency, their adaptable robustness to client-
server clock desynchronization, and their susceptibility to
network latency. Our findings confirm that TOTP operations
pose negligible performance overhead for authentication
systems and the choice of HMAC algorithm has a minor
impact on performance. SHA-1 is the fastest, but SHA-256 and
SHA-512 offer stronger cryptographic security.

The clock skew and network delay tolerance test reveal a
usability-security trade-off. It is crucial to implement
reasonable server-side’s allowed clock skew to ensure high
authentication success rates in environments with varying
network conditions and potential client clock inaccuracies.
However, the optimal value should be determined based on an
assessment of expected network latency distribution and
typical client device clock synchronization accuracy. Overly
strict skew settings can lead to usability issues, while overly
lenient settings could potentially weaken the time-based
security aspect of TOTP. Thus, it is recommended to consider
the following aspects before configuring and implementing
reliable TOTP systems.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

1) Implement Server-Side Clock Skew Tolerance:

Prioritize a sensible value on the server to balance security

(smaller window) and usability/reliability (larger window).

Based on this analysis, setting server skew to tolerate one step

clock skew can provide excellent resilience. Given a standard

TOTP time step of 30 seconds, this means an effective

window of 90 seconds (30s past, 30s current, and 30s future).

Tolerating two step clock skew is generally still acceptable

and sufficient for most practical applications.

2) Monitor and Address Clock Synchronization: While

server-side tolerance helps, it is still a good practice to

encourage client clock synchronization. For example, via

NTP. This increases security and reduces reliance on larger

server-side skew allowances.

3) Consider Network Conditions: The result shows that

high latency coupled with client skew can be problematic

without any clock skew tolerance. For critical application,

consider network performance and potencial latency spikes

when determining the time step and allowed clock skew.
These findings provide developers and system

administrators with practical information that helps them
configure TOTP systems in a way that strikes the best possible
balance between strong security, a smooth user experience, and
adaptability to actual network conditions. Potential options for
future research include investigating how TOTP can be
integrated with other multi-factor authentication factors,
comparing TOTP with new authentication standards like
FIDO2/WebAuthn, or conducting user studies to assess the
security and usability implications of various allowed clock
skew settings and network latency conditions from the user's
perspective.

SOURCE CODE REPOSITORY AT GITHUB

https://github.com/gracialy/totp-experiment

VIDEO LINK AT YOUTUBE

https://youtu.be/CjsjZdQSQOc

ACKNOWLEDGMENT

The author would like to express sincere gratitude to Dr. Ir.
Rinaldi Munir, M.T. for his invaluable guidance and insightful
lectures. The author also extends appreciation to II4021
Cryptography classmates for their constant support and
collaborative spirit. Finally, special thanks are due to
Distributed Systems 21’ Lab Assistants for inspiring the author
to look more into TOTP mechanism.

REFERENCES

[1] L. A. Meyer, S. Romero, G. Bertoli, T. Burt, A. Weinert, and J. L.
Ferres, “How effective is multifactor authentication at deterring
cyberattacks?,” arXiv.org, May 01, 2023.
https://arxiv.org/abs/2305.00945

[2] “CWE - CWE-308: Use of Single-factor Authentication (4.4),”
cwe.mitre.org, Oct. 26, 2023.
https://cwe.mitre.org/data/definitions/308.html

[3] D. M’Raihi et al., “TOTP: Time-Based One-Time Password Algorithm,”
datatracker.ietf.org, May 2011.
https://datatracker.ietf.org/doc/html/rfc6238

[4] D. M’Raihi et al., “HOTP: An HMAC-Based One-Time Password
Algorithm,” Ietf.org, 2022.
https://www.datatracker.ietf.org/rfc/rfc4226.txt

[5] J. Hoagland, “Multi-factor Authentication Using Time-based One-Time
Password (TOTP),” Pangea. https://pangea.cloud/securebydesign/authn-
using-totp/

[6] L. Lumburovska, J. Dobreva, S. Andonov, H. Trpcheska, and V.
Dimitrova, “A Comparative Analysis of HOTP and TOTP
Authentication Algorithms. Which one to choose?,” 2021. Available:
https://stumejournals.com/journals/confsec/2021/4/131.full.pdf

[7] A. Rahmatulloh, R. Gunawan, and F. M. S. Nursuwars, “Performance
comparison of signed algorithms on JSON Web Token,” IOP
Conference Series: Materials Science and Engineering, vol. 550, p.
012023, Aug. 2019, doi: https://doi.org/10.1088/1757-
899x/550/1/012023.

[8] Emin Huseynov and J.-M. Seigneur, “Hardware TOTP tokens with time
synchronization,” 2019 IEEE 13th International Conference on
Application of Information and Communication Technologies (AICT),
Oct. 2019, doi: https://doi.org/10.1109/aict47866.2019.8981762.

[9] “PEP 506 – Adding A Secrets Module To The Standard Library |
peps.python.org,” peps.python.org. https://peps.python.org/pep-0506/

[10] G. Bianchi and L. Valeriani, “Time Is on My Side: Forward-Replay
Attacks to TOTP Authentication,” Security and Privacy in Social
Networks and Big Data, pp. 109–126, 2023, doi:
https://doi.org/10.1007/978-981-99-5177-2_7.

STATEMENT

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Lydia Gracia 18222035

https://github.com/gracialy/totp-experiment
https://youtu.be/CjsjZdQSQOc
https://arxiv.org/abs/2305.00945
https://cwe.mitre.org/data/definitions/308.html
https://datatracker.ietf.org/doc/html/rfc6238
https://www.datatracker.ietf.org/rfc/rfc4226.txt
https://pangea.cloud/securebydesign/authn-using-totp/
https://pangea.cloud/securebydesign/authn-using-totp/
https://stumejournals.com/journals/confsec/2021/4/131.full.pdf
https://doi.org/10.1088/1757-899x/550/1/012023
https://doi.org/10.1088/1757-899x/550/1/012023
https://doi.org/10.1109/aict47866.2019.8981762
https://peps.python.org/pep-0506/
https://doi.org/10.1007/978-981-99-5177-2_7

