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Abstract—This research provides an experimental 

investigation of Time-Based One-Time Password (TOTP) 

systems, a commonly utilized multi-factor authentication 

mechanism. The study includes quantitative assessment of the 

operational performance of TOTP through direct 

implementation of the RFC 6238 standard, focusing on the 

generation and verification speeds for several HMAC algorithms. 

Moreover, this study provides a thorough empirical analysis of 

how network client-server clock skew and network latency affect 

authentication success rates. Our findings show that although 

TOTP operations are computationally trivial and take place in 

microseconds, network latency significantly reduces the effective 

OTP validity window and its resilience to clock 

desynchronization is directly proportional to specified tolerance 

levels. Different HMAC algorithms exhibit subtle performance 

variations, with SHA-1 being the fastest but cryptographically 

weakest, and SHA-512 being the strongest but slightly slower. 

The result can provide insights to help developers and system 

administrators to create, configure, and implement reliable and 

easy-to-use authentication solutions. 
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I.  INTRODUCTION 

Time-Based One-Time Password (TOTP) stands as a 
cornerstone of modern multi-factor authentication (MFA), 
offering a robust defense against common cyber threats like 
credential stuffing and phishing, which often bypass traditional 
password-only or SMS-based OTP systems. Defined by RFC 
6238, TOTP leverages a shared secret key and the current time 
to generate a unique, short-lived password, significantly 
enhancing authentication security. Despite its widespread 
adoption, a comprehensive empirical understanding of TOTP’s 
real-world performance characteristics and its resilience to 
operational challenges, particularly client-server clock 
desynchronization and network latency, remains vital for 
optimal deployment.  

Time-Based One-Time Passwords (TOTP), which are 
frequently used in modern multi-factor authentication (MFA), 
offer a robust defense against prevalent cyberthreats including 
phishing and credential stuffing. By creating a unique, short-
lived password using a shared secret key and the current time, 
TOTP significantly increases authentication security. However, 
optimal deployment of TOTP still requires a thorough 
empirical understanding of its real-world performance 
characteristics and its ability to withstand operational 
difficulties, especially client-server clock desynchronization 
and network latency. 

This report addresses these areas by quantitatively 
evaluating TOTP’s operational efficiency, empirically 
analyzing its tolerance to clock skew and network latency. This 
paper specific objectives are to (1) measure the average 
execution times for TOTP generation and verification 
operations; (2) empirically examine the effects of network 
client-server clock skew and network latency on TOTP 
authentication success rates; and (3) examine the performance 
characteristics of various HMAC algorithms (SHA-1, SHA-
256, SHA-512); and (4) discuss the practical usability-security 
trade-offs related to clock skew tolerance configuration and the 
impact of network conditions on TOTP systems. 

II. BACKGROUNDS AND RELATED WORKS 

A. Fundamentals of OTPs and Cryptography 

Multi-Factor Authentication (MFA) schemes enhance 
security by requiring users to present two or more pieces of 
evidence (factors) to verify their identity [1]. These factors 
typically fall into three categories: something the user knows 
(e.g., a password), something the user has (e.g., a smartphone, 
a hardware token), or something the user are (e.g., a 
fingerprint, facial recognition). One-Time Passwords (OTPs) 
primarily leverage the "something you have" factor, where a 
dynamically generated code is sent to or produced by a trusted 
device in the user's possession. The ephemeral nature of OTPs 
makes them highly resistant to replay attacks, brute-force 
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attacks, and credential stuffing, which are common 
vulnerabilities of static passwords [2]. 

B. Time-Based One-Time Password (TOTP) - RFC 6238 

According to RFC 6238 [3], the Time-Based One-Time 
Password (TOTP) technique is a commonly used standard for 
creating temporary, time-synchronized authentication 
credentials. Building upon the principles of HMAC, TOTP 
offers a stateless alternative that simplifies server-side 
management by eliminating the need to synchronize the event 
counters (as seen in HOTP, HMAC-Based One-Time Password 
[4]). It does this by substituting an event-based counter for a 
time-based factor. 

The TOTP algorithm's core components are a dynamically 
changing time value (T) and a shared secret key (K), which are 
only known by the client (authenticator app) and the server. 
The time value T is derived by dividing the current Unix time 
(seconds since the Unix epoch, January 1, 1970, 00:00:00 
UTC) by a predefined time step (X), commonly set to 30 or 60 
seconds [5]. This efficiently divides time into distinct, 
sequential periods. The formula for calculating T is given by 

 T=⌊(Current Unix Time−T0)/X⌋ ()    +   =  () () 

where T0 is the Unix time epoch (typically 0, unless 
specified otherwise for synchronization purposes), and X is the 
time step in seconds. 

Once the time value T is computed, it is used as the 
"message" input for the HMAC calculation. The following 
formula is then used to generate the complete TOTP value: 

 TOTP=TRUNCATE(HMAC-SHA(K,T)) ()    +   =  () () 

The HMAC digest produced with the shared secret key K, 
the time value T, and a selected SHA cryptographic hash 
function (such as SHA-1, SHA-256, or SHA-512) is denoted 
here by the notation HMAC-SHA(K,T). This HMAC digest is 
then transformed into a human-readable, fixed-digit OTP using 
the TRUNCATE function. The following phases make up the 
truncation procedure, which was taken from RFC 4226 Section 
5.3 [3]: 

1) Offset Calculation: As an offset, the last four bits of the 

last byte of the HMAC digest are utilized. For example, if the 

last byte is 0x3A, the last 4 bits are 0xA (decimal 10), so the 

offset is 10. 

2) Dynamic Truncation: Four bytes are extracted from the 

HMAC digest starting from the calculated offset. 

3) MSB Clearing: To generate the final, fixed-length 

decimal OTP, this 31-bit integer is then modulo 10digits, where 

digits is the required OTP length, usually 6 or 8. 

4) Modulo Operation: This 31-bit integer is then taken 

modulo 10digits (where digits is the desired OTP length, 

typically 6 or 8) to produce the final, fixed-length decimal 

OTP. 
This time-dependency is a key strength of TOTP since it 

limits the validity of codes to a relatively short time, making 

them naturally resistant to replay attacks beyond that time 
window. However, this also creates a crucial reliance on 
precise time synchronization between the server that verifies 
the OTP and the client that generates it. 

C. Related Work 

Various aspects of OTP systems have been thoroughly 
examined in previous studies, including their general security 
against relay attacks and brute-force attempts [6]. Studies on 
the performance of cryptographic primitives and authentication 
mechanisms [7] generally indicate that the underlying 
cryptographic operations are efficient. However, specific 
empirical benchmarks that focus on combined speeds of TOTP 
creation and verification, especially in Python 
implementations, are less often described. 

Moreover, the issue of clock synchronization in distributed 
systems and its effect on time-sensitive protocols such as 
TOTP has been recognized [8], alongside some practical 
concern on the allowed_skew parameter [9]. The impact of 
network latency on TOTP authentication, while intuitively 
understood, has not been rigorously quantified in many studies. 
Similarly, while the security and performance characteristics of 
different HMAC algorithms are well-studied in other contexts, 
their specific impact within the TOTP framework warrants 
empirical investigation.  

This report extends existing knowledge by providing direct 
empirical quantification of TOTP performance, conducting a 
detailed analysis of its resilience to various client-server clock 
offsets and network latencies, and comparing the performance 
of different HMAC algorithms, offering concrete data to 
inform the critical usability-security trade-off in real-world 
TOTP deployments. 

III. METHODOLOGY 

A. TOTP Algorithm Implementation Details 

RFC 6238's requirements were carefully followed in the 
implementation of the Time-Based One-Time Password 
(TOTP). It generates 6-digit OTPs by default using SHA-256 
as the underlying HMAC (Hash-based Message Authentication 
Code) method. 

 The OTP generation process fundamentally involves 
computing an HMAC-SHA256 digest. This digest is derived 
from a time-dependent integer (specifically, the current Unix 
timestamp divided by a predefined time step, typically 30 
seconds, to yield the current "time window") and a shared 
secret key. Following this, a dynamic truncation algorithm is 
applied to a specific portion of the resulting digest to extract 
and produce the final N-digit OTP. The cryptographically 
secure pseudo-random number generator (CSPRNG) in the 
operating system is used by Python's secrets module [9] to 
produce the shared secret itself, guaranteeing robust 
randomness. 

 The system's goal for OTP verification is to verify an 
OTP by comparing it to a variety of potentially legitimate 
OTPs. Potentially legitimate OTPs are defined by the 
allowed_skew parameter, consisting of the server's current time 



Makalah II4021 Kriptografi, Semester II Tahun 2024/2025 

 

window, as well as an adjustable number of adjacent time 
windows (both past and future). This multi-window checking 
mechanism is crucial for accommodating minor clock 
desynchronization between the client and server, and for 
mitigating the impact of network latency on authentication 
success [3]. The underlying OTP computation within the 
verification process was specifically designed to dynamically 
generate and compare OTPs for each of these potential time 
windows (T±i×time_step). According to the RFC, this method 
made sure that the experimental setup properly replicated 
client-side time offsets and network-induced delays, and that 
the server-side verification mechanism evaluated these against 
its defined tolerance windows. 

B. Experimental Design 

Three main studies were carried out: network latency impact 
testing, clock skew resilience testing, and performance 
benchmarking. 

1) Performance Benchmarking: Performance was 

evaluated by measuring the average execution time for TOTP 

generation and verification operations. Each operation was 

executed 100,000 times, utilizing Python's time.perf_counter() 

for high-resolution timing. Tests were conducted with SHA-1, 

SHA-256, and SHA-512 as the HMAC algorithms and 

generated 6-digit OTPs to compare their performance 

characteristics. Figure 1 provides a detailed flowchart 

illustrating the experiment. 

 

 
Fig. 1. Performance Benchmarking Flowchart 

 

2) Clock Skew Resilience Testing: Client-server clock 

skew resilience was assessed by simulating various client 

clock offsets ranging from −60 seconds to +60 seconds, in 1-

second increments. For each client offset, 100 OTPs were 

precisely generated on the client side using the corresponding 

skewed time. These generated client OTPs were then 

submitted for verification against a simulated server. The 

server's OTP validation process was configured with 

allowed_skew settings of 0, 1, and 2 time steps. Each time step 

represents 30 seconds of tolerance in either direction (i.e., a 1-

step skew allows for checking current, previous, and next 30-

second windows). The success rate for each client offset and 

server skew configuration was recorded. Figure 2 provides a 

detailed flowchart outlining the experiment. 

 

 
Fig. 2. Clock Skew Resilience Flowchart 

3) Network Latency Impact Testing: This experiment 

builds upon previous analysis by varying both client-side 

clock skew and network latency. The latency values range 

from 0 milliseconds to 60,000 milliseconds (1 minute). For 

each latency value, and for server allowed_skew settings of 0, 

1, and 2 time steps, 30 OTP verification attempts were made. 

These tests were run at clock drift of 0s, -10s, and 10s. The 

success rate for each latency, skew, and offset combination 

was recorded. Figure 3 provides a detaled flowchart outlining 

the experiment. 
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Fig. 3. Clock Skew Resilience Flowchart 

IV. RESULTS AND ANALYSIS 

A. Performance Analysis 

The empirical analysis of TOTP operations yielded the 
following average execution times. 

TABLE I.  RESULT OF TOTP VS. HOTP PERFORMANCE 

ANALYSIS 

Operation SHA-1 

(seconds) 

SHA-256 

(seconds) 

SHA-512 

(seconds) 

TOTP Generation 

(6-digit) 

0.000016 0.000017 0.000019 

HOTP Generation 
(6-digit) 

0.000017 0.000016 0.000019 

TOTP Verification 

(6-digit, Skew: 1) 
0.000034 0.000035 0.000038 

HOTP Verification 
(6-digit, Window: 

10) 

0.000018 0.000017 0.000019 

 

As described in the table, TOTP generation and verification 
are both computationally lightweight operations that take only 
a few microseconds to complete. It is also observed that 
performance differences between the HMAC algorithms only 
spans around 0,003ms to 0,004ms, with SHA-1 being the 
fastest performance and SHA-512 is slightly slower, likely due 
to the larger block size and more complex computations 
involved. The performance differences, however, are negligible 
and are unlikely to be noticeable in typical use cases. 

B. Clock Skew Resilience 

The clock skew analysis reveals a direct and quantifiable 
correlation between the server's allowed_skew configuration 

and its tolerance to client clock desynchronization. Figure 4 
below shows the observed success rates for various client 
offsets. 

 

Fig. 4. TOTP Verification Success Rate vs.Client Clock Skew 

As illustrated in Figure 4, the observed success rates for 
various client offsets are: 

1) allowed_skew = 0: With no tolerance for adjacent time 

windows, successful verification was highly restrictive. 

Empirical results show a 100% success rate only for client 

offsets between approximately −15 seconds and +5 seconds 

relative to the server's time window center. Outside of this 

small window, all tested offsets had 0% success. This shows 

that the precise current time step must be met without any 

buffer. 

2) allowed_skew = 1: Allowing for one adjacent time 

window in each direction significantly extended the successful 

verification window, achieving a 100% success rate for client 

offsets ranging from approximately −45 seconds to +45 

seconds (90 seconds timeframe). This illustrates how well 

one-step skew can account for common minor clock drifts. 

3) allowed_skew = 2: This configuration achieves a 100% 

success rate for client offsets ranging from approximately −60 

seconds to +60 seconds (120 seconds time frame). This wider 

window offers greater resilience against more significant clock 

desynchronization. 
These findings represent the intrinsic usability-security 

trade-off in TOTP's allowed_skew parameter. For instance, a 2-
step skew allows an OTP to be valid for up to 2 minutes, 
compared to the standard 30-second window for a 0-step skew. 
The higher allowed_skew value will directly enhance user 
experience by forgiving greater clock discrepancies, which is 
crucial in real-world scenarios where perfect clock 
synchronization is challenging. However, with significantly 
more valid time, the 2-step skew conformation is more prone to 
brute-force attack. Needless to say, system administrators must 
carefully weigh the security consequences of a longer OTP 
validity window against the goal for better usability. 

C. Network Latency-Clock-Skew Impact 

This section presents the empirical findings on how various 
combinations of client-side clock skew, network latency, and 
server-side allowed_skew impacts the success rate of the TOTP 
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authentication. The visual representation of both variables’ 
complex relationship can be seen in Figure 5, 6, and 7.  

 

Fig. 5. Network Latency-Clock-Skew Variance vs. Success Rates in Clients 

with Initial Client Skew -10s 

 

Fig. 6. Network Latency-Clock-Skew Variance vs. Success Rates in Clients 

with Initial Client Skew 0s 

 

Fig. 7. Network Latency-Clock-Skew Variance vs. Success Rates in Clients 

with Initial Client Skew +10s  

Figure 5, 6, and 7 proves the server’s allowed_skew settings 
importance in determining the system’s tolerance to both initial 
client clock desynchronization and subsequent network 
latency. Data with a strict allowed_skew = 0 impact clients 
with perfect clock synchronization for delay at 1000ms with a 
slight drop to 96.67%.  

Clients with an initial skew of -10 seconds, however, 
experience a greater impact, where success rates plummeted to 
63.33% with latencies of 500ms and 1000ms. This result shows 
that no server-side tolerance for clock skew might make the 
OTP generated by the client to become invalid due to the 
combined effect of negative skew and network delay before it 
reaches the server. 

Even more extreme for clients with an initial clock skew of 

+10 seconds, that consistently gives 0% success rate for 

minimal latency. The +10 seconds client offset causes the 

client to generate OTPs for the next time step before the server 

has officially entered that time step. However, with network 

delay, later the server’s clock catches up and transitions into 

the time step for which the client’s OTP was generated. As a 

result, the success rate in the range of 500ms to 1000ms finally 

increases to an average of 80%. This interesting finding 

introduces us to a possible vulnerability of TOTP, forward-

replay attack [10]. 

On the other hand, cases with allowed_skew = 2 shows 
100% success rate in all of the test cases. The result further 
shows that without sufficient server-side skew tolerance, even 
relatively small network latencies (e.g. 500ms to 1000ms) can 
cause significant authentication failures, especially when 
coupled with existing client-server clock discrepancies. It also 
highlights the security issues implications on larger 
allowed_skew. 

V. CONCLUSION 

This study has demonstrated several key features of Time-
Based One-Time Passwords, including their remarkable 
computational efficiency, their adaptable robustness to client-
server clock desynchronization, and their susceptibility to 
network latency. Our findings confirm that TOTP operations 
pose negligible performance overhead for authentication 
systems and the choice of HMAC algorithm has a minor 
impact on performance. SHA-1 is the fastest, but SHA-256 and 
SHA-512 offer stronger cryptographic security.  

The clock skew and network delay tolerance test reveal a 
usability-security trade-off. It is crucial to implement 
reasonable server-side’s allowed clock skew to ensure high 
authentication success rates in environments with varying 
network conditions and potential client clock inaccuracies. 
However, the optimal value should be determined based on an 
assessment of expected network latency distribution and 
typical client device clock synchronization accuracy. Overly 
strict skew settings can lead to usability issues, while overly 
lenient settings could potentially weaken the time-based 
security aspect of TOTP. Thus, it is recommended to consider 
the following aspects before configuring and implementing 
reliable TOTP systems. 
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1) Implement Server-Side Clock Skew Tolerance: 

Prioritize a sensible value on the server to balance security 

(smaller window) and usability/reliability (larger window). 

Based on this analysis, setting server skew to tolerate one step 

clock skew can provide excellent resilience. Given a standard 

TOTP time step of 30 seconds, this means an effective 

window of 90 seconds (30s past, 30s current, and 30s future). 

Tolerating two step clock skew is generally still acceptable 

and sufficient for most practical applications. 

2) Monitor and Address Clock Synchronization: While 

server-side tolerance helps, it is still a good practice to 

encourage client clock synchronization. For example, via 

NTP. This increases security and reduces reliance on larger 

server-side skew allowances. 

3) Consider Network Conditions: The result shows that 

high latency coupled with client skew can be problematic 

without any clock skew tolerance. For critical application, 

consider network performance and potencial latency spikes 

when determining the time step and allowed clock skew. 
These findings provide developers and system 

administrators with practical information that helps them 
configure TOTP systems in a way that strikes the best possible 
balance between strong security, a smooth user experience, and 
adaptability to actual network conditions. Potential options for 
future research include investigating how TOTP can be 
integrated with other multi-factor authentication factors, 
comparing TOTP with new authentication standards like 
FIDO2/WebAuthn, or conducting user studies to assess the 
security and usability implications of various allowed clock 
skew settings and network latency conditions from the user's 
perspective. 
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